
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELWVIER Journal of Pure and Applied Algebra 114 (1997) 175-208 

The groups (I, m 1 n, k) 
Martin Edjvet a, Richard M. Thomas b,* 

a Depurtment of Mathematics, University of Nottingham, University Park, Nottingham NG7 2RD, UK 
b Department of Mathematics and Computer Science, University of Leicester. Leicester LEI 7RH, UK 

Communicated by P.T. Johnstone; received 23 June 1995; revised 24 October 1995 

Abstract 

The groups (1,m 1 n,k) defined by the presentations 

(a,b : a’ = b” = (ab)” = (ab-‘)k = l), 

were first studied systematically by Coxeter in 1939, and have been a subject of interest ever 
since, particularly with regard to the question as to which of them are finite. The finiteness ques- 
tion has been completely determined for 1 = 2 and I = 3, and there are some other partial results. 
In this paper, we give a complete determination as to which of the groups (1, m / n, k) are finite. 

The proof of this result essentially splits into two parts. When I, m, n and k are “large” 
(in a sense to be made precise in the paper), we can use arguments in terms of pictures to 
show that (I, m / n, k) is infinite; this will involve finding generators for the second homotopy 
modules of the presentations. For small values of I, m, n and k, the groups are finite, and we 
can quote previously established results. For intermediate values, the groups can still be infinite, 
even though the arguments in terms of pictures do not apply. In these cases, where the status 
of the group was previously open, we produce a series of individual arguments to show that the 
groups are infinite; many of these are based on computational results. 

1991 Math. Subj. Class.: 20F05 

1. Introduction 

The group (I, m 1 n, k) is defined by the presentation 

(a,b : ur = b” = (ab)” = (ab-‘)k = l), 

where I, m, n, k > 1. It is clear that (1, m 1 n, k) is isomorphic to (m, I 1 n, k) and also 

to (I, m ( k, n), and so we may assume, without loss of generality, that J 5 m and that 
n i k; we will adopt this convention throughout this paper. 
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This class of groups were first studied systematically in [3], where several results 
on their finiteness (or otherwise) were proved. As we shall note in a moment, the 
finiteness question has been completely decided for I = 2 and I = 3, and there 
are some other partial results. The purpose of this paper is to build on these re- 
sults and give a complete classification as to which of the groups (I, m ( II, k) are 
finite. 

We should mention in passing that the question of the finiteness of the group 
(m, n, p; q) defined by the presentation 

(a,b:a”‘= b” = (ab)P = (a-‘b-lab)4 = 1) 

has been largely determined, in that there are (at present) only six values of (m, n, p; q) 
for which the finiteness or otherwise of the group is an open question; see [ 13, 16, 
6-81 (and also [17, 241 for a survey of such results). We will make use of part of this 
classification in this paper (see Theorems 2.7 and 2.8). 

Returning to (1, m 1 n, k), the finiteness question has been settled (as we mentioned 
above) for I= 2, in that we have: 

Proposition 1.1. The group (2,m 1 n, k) is isomorphic to the triangle group (2,m,d), 
where d = gcd(n, k), and is thus Jinite if and only if l/m + l/d > i. 

This result was noted in [3]. As far as the case I = 3 is concerned, (3,m 1 n, k) is 
isomorphic to (3, n ) m, k); so, given Proposition 1 .l, we may assume that m > 3 and 
that k > n 2 3, and we have the following result from [4]: 

Proposition 1.2. Zf m 2 3 and k > n 2 3, then (3, m 1 n, k) is finite if and only if 

cos($) +cos(F) ices(T) < 0. 

Given these two results, we only need consider the cases where m 2 I 2 4. In this 
paper, we will prove the following: 

Theorem 1.3. Zf m 2 I > 4 and k > n 2 2, then (Z,m 1 n, k) is jinite if and only if 
one of the following possibilities occurs: 

1. n=k=2; 
2. 1 = m = 4, n = 2; 
3. (l,m,n,k) is one of 

(4,592, k), 3 I 
(5,5,2,4); 
(7,8,2,3). 

Combining Theorem 

k 5 5; (4,m,2,3),6 <m 5 9; (5,m,2,3),m 2 5; 
(6,7,2,3); (7,7,2,3); 

1.3 with Propositions 1.1 and 1.2 yields: 



M. Edjvet. R. M. Thomas/ Journal of Pure and Applied Algebra 114 (1997) 175-208 177 

Theorem 1.4. Zf m L 1 L 2, k > n 2 2, d = gcd(n,k) and e = gcd(m, k), then 
(Z,m 1 n, k) is fmite if and only if (l,m,n, k) is one of: 

(2,2,n,k),n > 2; (2, m, n, k), m 2 3, d I 2; 
(2,3,n,k),3Id<5; (2,m,n,k),4<mI&d=3; 
(3,m,2,k),e F 5; (3,3,3,k),k > 3; 
(3,3,4,4X (333,425); 
(3,4,3,4X (3,4,3,5); 
(3,5,3,4); (3,m,3,3),m L 4; 
(Lm,2,2),1 2 4; (4,4,2,k),k > 3; 
(4,5,2,k),3Lk<5; (4,m,2,3),6Im<9; 
(5,m,2,3),m L 5; (5,5,2,4); 
(6,7,2,3); (7,7,2,3 ); 
(7,8,2,3). 

The proof of Theorem 1.3 essentially splits into two parts. When 1, m, n and k are 
“large” (in a sense to be made precise later), we can use arguments in terms of pictures 
to show that (1, m 1 n, k) is infinite; this will involve finding generators for the second 
homotopy modules of the presentations. We give an account of pictures in Section 3, 
and apply these to our groups in Sections 4 and 5. For small values of 1, m, n and k, 
the groups are finite, and we can quote previously established results. For intermediate 
values, the groups can still be infinite, even though the arguments in terms of pictures 
do not apply. In these cases, where the status of the group was previously open, we 
produce a series of individual arguments to show that the groups are infinite. Many 
of these are based on computational results; the main software we used was Cayley 
[2], GAP [21] and Quotpic [14], and software provided by Edmund Robertson, which 
included a Todd-Coxeter program, a Reidemeister-Schreier routine based on [lo] and 
the Tietze transformation program described in [ 111. A nice overview of the use of 
these programs may be found in [12]. We would like to acknowledge the role played 
by all these programs in the proof of Theorem 1.3. 

2. Preliminary results 

In this section, we shall list some previous results about these groups which we will 
combine with the results proved in this paper to produce Theorem 1.3. We also list 
some general results for proving groups infinite. 

We start with two results which state that certain of these groups are finite. The first 
may be found in [3]: 

Proposition 2.1. The following groups are all finite: 
1. (4,4 12, k), which has order 4k2 for all k; 
2. (4,5 I2,3), which is trivial; 
3. (4,5 I2,4), which is a semi-direct product of E32 by C’S, and hence has order 

160; 
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4. (4,5 j2,5), which is isomorphic to Ah; 
5. (4,6 I2,3), which is isomorphic to Ss; 
6. (4,7 I2,3), which is isomorphic to PSL(2,7); 
7. (4,8 /2,3), which has order 1152; this group G has abelian quotient Cd and G’ 

is the central product of two copies of SL(2,3); 
8. (4,9 I2,3), which is isomorphic to PSL(2,17); 
9. (5,m I2,3), which is isomorphic to AS if 5 divides m, and is trivial otherwise; 

10. (5,5 /2,4), which is isomorphic to Ah; 
11. (I, m I 2,2), which is trivial tf I and m are odd, dihedral of order 2m if 1 is 

even and m odd, dihedral of order 21 tf m is even and I odd, and metabelian 
of order 41m tf 1 and m are even; 

12. (6,7 /2,3), which is isomorphic to PSL(2,13); 
13. (7,712,3), h’ h w tc is isomorphic to PSL(2,13). 

Here C,,, denotes the cyclic group of order m and E,, the elementary abelian group 
of order n; A, denotes the alternating group of degree n and S,, the symmetric group 
of degree n. From [18], we have the following: 

Theorem 2.2. The group (7,8 I 2,3) is a semi-direct product of Ee4 by PSL(2,7), and 
hence is finite of order 10752. 

The following two results were proved in [3]: 

Proposition 2.3. The group (5, m I 2, k) is isomorphic to (5, k 12, m). 

Theorem 2.4. If 1 and m are even, or if 1 and k are even with n = 2, then (I, m I n, k) 
is jinite tf and only tf 

2sin($)sin(a) >cos(i) + cos(s). 

Since (1, m I n, k) is isomorphic to (m, 1 I n, k), we also have the conclusion of The- 
orem 2.4 holding when m and k are even and n = 2. This result clearly reduces the 
problem considerably, and we spell out the consequences of it explicitly. 

Corollary 2.5. If 4 5 1 5 m and 2 < n < k, and tf one of the following conditions 
holds: (1) 1 and m are even; (2) 1 and k are even with n = 2; (3) m and k are even 
with n = 2, then (1,m I n, k) is finite if and only tf either 1 = m = 4 and n = 2, or 
else (l,m,n, k) is one of (4,5,2,4), (4,6,2,3) and (4,8,2,3). 

The following result is essentially in [13]: 

Theorem 2.6. (4,5 12, k) is finite if and only tf k < 5. 
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Proof. In [13], it is shown that the group with presentation 

(x, y : x2 = y4 = (xv)5 = (xy2)k = 1) 

is finite if and only if k < 5. Writing the presentation in terms of new generators 
a = y and b = xy yields the result. ??

We also have the following: 

Theorem 2.7. (7, m \2,3) is injiniinite for m >_ 9. 

Proof. In [3], it is shown that the group Gk1,2m with presentation 

(v,s,t:rk=S’=t2m= (my = (@ = (t# = (T-sty = 1) 

contains the group H(k, 1,m) with presentation 

(X, y : Xk = y’ = (xy)2 = (x2yZ)m = 1) 

as a subgroup of index 2. In the case where k = 3 and 1 = 7, we have the group 
G3,7,2m, which contains (2,3,7; m) as a subgroup of index 2, and which is therefore 
infinite for m 2 9 by [13, 16, 61. On the other hand, if we put u = y and u = xyw2, 
then the presentation for H(3,7, m) becomes 

(u,u : (Idy = zl’ = (uu3y = urn = 1); 

introducing w = u3 and deleting u transforms this to 

(w,u : (vw3)3 = Iv’ = (ln4q2 = urn = 1). 

Given (vw)~ = 1, the relation (uw~)~ = 1 is equivalent to (w-~u-‘w~)~ = 1, and hence 
to (u-‘w)~ = 1. So we have that H(3,7,m) is isomorphic to (7,m \2,3), and the result 
follows. 0 

We now prove a result classifying the groups (1, m 1 n, k) with 1 = m. If 1 = 2 or 
1 = 3, the result follows from Propositions 1 .l and 1.2, and so we concentrate on the 
case where 1 2 4. 

Theorem 2.8. The group (I,1 1 n, k) with 1 2 4, n < k and (n, k) # (2,2) is jnite 
if and only if one of the following four possibilities occurs: 1 = 4, n = 2, k 2 3; 
1 = 5, n = 2, k = 3; 1 = 5, n = 2, k = 4; 1 = 7, n = 2, k = 3. 

Proof. The group G = (I,1 1 n, k) has presentation 

(a,b : a’ = b’ = (ab)” = (ab-‘)k = 1). 

As was pointed out in [3], this group has an automorphism t of order 2 interchanging 
a and 6. If we form the semi-direct product of G with (t), we get the group with 
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presentation 

(t,a : t* = a’ = (at)*” = (t-‘a-‘tay = l), 

i.e. the group (2,1,2n; k) = (2,Z,2k; n). By [7], and since n < k, this group is finite if 
and only if we have one of the four possibilities listed above. 0 

Following [3], we say that the group (I, m j n, k) collapses if any of the elements 
a, b, ab and ab-’ have orders less than 1, m, n and k respectively, and otherwise 
that the group does not collapse. From [23], we immediately deduce the following 
result: 

Proposition 2.9. Zf (I, m ( n, k) d oes not collapse, and if l/l + l/m + l/n + l/k < 1, 
then (I, m 1 n, k) is infinite. 

Lastly, we have the following variation on the Golod-SafareviE theorem from [25]: 

Theorem 2.10. Zf a group G has a finite presentation with n generators and r relators, 
if G has an elementary abelian p-quotient of rank d for some prime p, and if r - n < 
d2/4 - d, then G is injnite. 

3. Pictures 

A vital ingredient in the proof of Theorem 1.3 is that of pictures, and, for the benefit 
of the reader, we will give a brief account of these here. For reasons of space, we will 
not attempt to give a comprehensive treatment of this topic, and refer the reader to [9, 
15, 16, 19, 201. 

We are considering the group G = (I, m 1 n, k) defined by the presentation 

@ = (a,b : a’ = b” = (ab)” = (ab-‘)k = I), 

where m > 1 2 4 and k > n 2 2. Let A and B be the cyclic groups Cl and C, 
with presentations (u : a l = 1) and (b : b” = 1) respectively. We can regard G as a 
two-relator product of A and B, that is to say the quotient of the free product A *B by 
the normal closure of the two words CI = (ab)” and /? = (abe’)&. We will work with 
pictures over this two-relator product as in [ 161; this is a direct analogy of pictures 
over one-relator products described in detail in [ 151; one should also compare the 
use of pictures over “relative presentations” in [l]. The technique is originally due to 
Short [22]. 

A picture Il over p consists of the following: 
1. a disc D* (with boundary dD*); 
2. a collection V of pairwise disjoint closed discs in the interior of D* called vertices; 
3. a finite collection E of pairwise disjoint arcs in the interior of D* called edges; 

each edge is either a simple closed curve in the interior of D* which meets no 
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Fig. 1 

vertex, an arc joining two (not necessarily distinct) vertices, an arc joining a 
vertex to dD2, or an arc joining i3D2 to aD2; 

4. a collection of labels, one at each corner of each region of II (i.e. each connected 
component of dD2 - (V U E)), and one along each component of the intersection 
of a region with aD2. 

Each label of L7 is one of {a, a-l, b, b-l}, with the possible exception of labels on 
(segments of) aD2, which may be any element of A U B. Reading the labels round a 
vertex in a clockwise version yields (up to cyclic permutation) ~1, CI-‘, /I or p-i as 
a cyclically reduced word in A * B; we use the terms a-vertex and B-vertex to denote 
vertices with label cl*l and /I*’ respectively. 

A region of II is called a boundary region if it meets aD2, and is said to be interior 
otherwise. If aD2 meets no edges, then Ii’ is said to be spherical, and, in this case, 
aD2 is one of the boundary components of a non-simply connected region called the 
distinguished region (providing, of course, that n contains at least one vertex); all 
other regions are interior in this case. 

The labels of any region A of II must either all belong to A or all belong to B; thus 
we have A-regions and B-regions. The product of all the labels in A, evaluated in A 
or B as appropriate, must be the identity element. Since the labels round each vertex 
spell out a cyclically reduced word in which the labels come from alternately A and 
B, each edge must separate an A-region from a B-region. 

The boundary label of II is the cyclically reduced word obtained by reading the 
labels on aD2 in an anticlockwise direction; this word then represents the identity 
element of G. If L’ is spherical, then the boundary label is an element of A U B 
determined by the other labels of the distinguished region. 

Two distinct vertices of I7 are said to cancel along an edge e if they are joined by 
e and if their labels, read from the endpoints of e, are mutually inverse words in A *B; 
an example of two cancelling B-vertices is given in Fig. 1. 

Cancelling vertices can be removed from a picture by a sequence of so-called bridge 
moves and the deletion of a dipole (a connected spherical picture over @ containing 
exactly two vertices) without changing the boundary label; see [16] for details. Such a 
cancellation yields an alternative picture with the same boundary label and two fewer 
vertices. 

A picture is said to be reduced if it cannot be altered by bridge moves to a picture 
with a pair of cancelling vertices. Any cyclically reduced word in A * B representing 
the identity element of G occurs as the boundary label of some such picture. A picture 
which can be so altered fails to be reduced. 
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Fig. 2. 

Fig. 3. 

The picture Ii’ is said to be connected if V u E is connected; in particular, no edge 
of a connected picture is a simple closed curve or connects two points on 8D2 unless 
the picture consists only of that edge. 

We now consider parallel edges. Two edges of a picture II are said to be parallel if 
they form the boundary of a two-sided region, and are called &parallel if, in addition, 
they meet aD2. (In this last case, either the region is bounded by two edges and a 
segment of aD2 or else both edges are arcs joining aD2 to aD2.) If we have two 
parallel edges joining a-vertices u and u, then u and u will cancel; so, in a minimal 
situation, we will not have parallel edges joining two cr-vertices, and, similarly, we will 
not have parallel edges joining two /I-vertices. 

The maximum number of parallel edges between an cc-vertex and a p-vertex is 
two (see Fig. 2), and, in the special case we consider in the proof of Theorem 5.1, 
the maximum number of &parallel edges is also two (see Fig. 3). The first of these 
assertions is obvious. For the latter, the picture we consider has boundary label (a-lb)” 
where 0 < u < k, and so the only way to obtain more than two &parallel edges would 
be to join aD2 to a p-vertex, v say. Suppose that this were the case. It can be assumed, 
using bridge moves if necessary, that there are 2n- 1 &parallel edges incident at v. Now 
simply delete v and the 2n - ! a-parallel edges and form a new picture with boundary 
label (a-lb)k-u but with one fewer p-vertex. This would contradict our minimality 
condition. 

By making moves of the kind shown in Fig. 4 in which y denotes c( or /I, we can 
make the following assumption, which will hold throughout what follows: the label of 
any region of Zl of degree at least three does not contain a substring bb-’ or b-lb. 

We now form a graph f from Zi’ by identifying each pair of parallel or &parallel 
edges; in this way, we obtain a tesselation of the disc D2. The vertices of f are simply 
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Fig. 4. 

the cc-vertices and p-vertices of II, together with vertices on 80’ which we will call 
boundary vertices. A region in f is interior if it was interior in II; otherwise it is 
a boundary region. In the case n = 2, we make an additional transformation at each 
cc-vertex of II of degree two of the type shown in Fig. 5. 

If II is a spherical picture, we form a graph r from f by contracting the boundary 
80’ to a point and removing it; thus r will form a tesselation of the sphere S2 in 
which each region is a topological disc. The distinguished region of r is that obtained 
from the distinguished region of 17, and all other regions of r are said to be interior. 
If IZ is non-spherical, we simply take r to be r?. 

Since the maximum number of parallel edges between any two vertices of II or 
between a vertex and the boundary was two, it follows that every a-vertex in r has 
degree at least n and that every /j-vertex in r has degree at least k. Moreover, if any 
a-vertex u has degree n, then all the vertices adjacent to u in r must be /?-vertices 
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Fig. 5 

Fig. 6. 

(see Fig. 6), and, if any p-vertex u has degree k, then all the vertices adjacent to v 
in r must be a-vertices. However, as we will see later, there will be some instances 
where we will make a further identification of edges in r, and, in this case, we may 
have p-vertices of degree less than k. 

A region A of r is called an A-region if the label of A is a”iaE2aE3a”4, where si = 
f 1 (1 5 i 5 4) and C;=, si = 0. We see from Fig. 6 that an i-region cannot contain 
any cc-vertices of degree IZ, or, similarly, any /?-vertices of degree k. 

We now turn to the topic of curvature; our curvature arguments are based on those 
in [5-71. We give a brief description here, but we refer the reader to those papers for 
further details. 

If we have a vertex u in r of degree d, we assign an angle of 2x/d to the d comers 
of regions around u. If we have a region A of r of degree k (i.e. a region surrounded 
by k vertices) where the vertices have degrees di (1 < i 5 k), then the curvature c(A) 
of A is defined to be 

k 1 
(2-k)n +2rcx-. 

i.-l di 
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We will sometimes denote this by c(di,..., dk). It follows from Euler’s formula that, if 
Il is a connected spherical picture, then the sum of the curvature of the regions of I’ 
is 4x; if L’ is non-spherical, then the corresponding sum is at least 271. 

In our proofs, we will usually try and show that the values of 47~ and 21r cannot 
be obtained. Our method will be to locate those interior regions A of r of positive 
curvature (i.e. those regions A with c(A) > 0), and show that there is compensation by 
negatively curved neighbours. To this end, let c*(a) denote the sum of c(a) together 
with all possible additions of c(A), where c(A) > 0 and A shares an edge with a; 
this will be made more precise later. The aim will be to show that c*(a) 5 0 for each 
non-distinguished negatively curved region a of r, and then, in the spherical case, to 
show that c*(a) < 47r for the distinguished region 2. 

4. Quasi-asphericity 

As in the last section, let G be the group defined by the presentation 

p = (a,b : a’ = b”’ = (ab)” = (ab-l)k = l), 

and let a dipole be a connected spherical picture over @ containing exactly two vertices; 
an easy check shows that these must either both be cr-vertices or both j-vertices. If 
we regard @ as a two-dimensional CW-complex 2, then rci(.Z) is isomorphic to G and 
the spherical pictures we consider here represent elements of rrz(Z) (see [16]). Note 
that bridge moves do not change the free homotopy class. 

The presentation @ is quasi-aspherical over Cl * C, if every spherical picture over 
k;, containing at least one vertex fails to be reduced. It follows that, if 53 is quasi- 
aspherical, then, as a &i(Z)-module, ~(2) is generated by dipoles. 

We now prove: 

Theorem 4.1. If any of the following conditions hold, then p is quasi-aspherical ouer 
Cl * cm: 

(1) m 2 1 = 4, k 2 n > 4; (6) m > I= 5, n = 2, k > 6; 

(2)mZ1=4,n=3,k26; (7) l=9,m> ll,n=2,k>3; 
(3) m L 1 2 5, k 2 n > 3; (8) 1 2 11, m > 11, n = 2, k-2 3; 
(4) m > 1 2 7, n = 2, k > 5; (9) 1 > 7, m > 8, n = 2, k = 4. 
(5) m > 1 = 6, n = 2, k > 6; 

Proof. In each case, suppose (by way of contradiction) that ll is a reduced spherical 
picture over @ containing at least one vertex and satisfying the condition that I7 has 
the minimal number of vertices over all such pictures; in particular, L’ is connected. 

We form the graph r from 27 as described in Section 3. In the following case-by- 
case analysis, we locate all possible positively curved regions A of r and indicate how 
to distribute c(A) to negatively curved regions d^ to ensure that c*(d) < 0 whenever 

d^ is interior. This implies that, if d^ is the distinguished region, then c*( d) > 47r; 
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we obtain our contradiction at the end of the proof by showing that this cannot 
happen. 

In the first five cases, we actually have that c(A) I 0 for any interior region A of r. 
If m 2 1 = 4 and k 2 n > 4, it follows that the degree of each vertex and each 

interior region of r is at least 4, and c(A) 5 c(4,4,4,4) = 0. 
If m 2 1 = 4, n = 3 and k > 6, then each interior region A has degree at least 

4; if c(A) > 0, then A must contain an a-vertex of degree 3; since such a vertex is 
adjacent only to /?-vertices, it follows that c(A) 5 c(3,3,6,6) = 0. 

Suppose that m 2 1 > 5 and k 2 n > 3. If A has degree 5, then A either contains a 
pair of adjacent cc-vertices or a pair of adjacent /?-vertices, and c(A) 5 c(3,3,3,4,4) = 
0. If A has degree 4, then A must be an A-region, and it follows from the comments 
made in Section 3 that c(A) 5 c(4,4,4,4) = 0. 

If m > I 2 7, n = 2 and k 2 5, we again have that A has degree at least 4. If A has 
degree 5, then, as a region of n, A must have contained at least two a-vertices of degree 
two, and so must contain at least three /I-vertices, and so c(A) 5 c(3,3,5,5,5) < 0. 
If A has degree 4 and A is an A-region, then c(A) 5 c(3,3,6,6) = 0, and, if A has 
degree 4 and A is not an A-region, then A must contain four p-vertices and c(A) 5 
c(5,5,5,5) < 0. 

Suppose that m 2 I 2 6, n = 2 and k > 6. If A is an k-region, then we again have 
that c(A) 5 c(3,3,6,6) = 0; so assume that A is not an A-region. If A has degree 5, 
then A contains at least two /I-vertices, and c(A) 5 c(3,3,3,6,6) < 0. If A has degree 
4, then c(A) < c(3,6,6,6) < 0, and, if A has degree 3, then c(A) < c(6,6,6) = 0. 

In the remaining four cases, it turns out that r can contain interior regions A of 
positive curvature. 

Suppose that m > I = 5, n = 2 and k 2 6. If A is an A-region, then c(A) 5 
c(3,3,6,6); so assume that A is not an A-region. If A had contained in II at least 
one cc-vertex of degree two, then a similar argument to the previous case shows that 
c(A) 5 0. It follows that, if c(A) > 0, then A is given (up to cyclic permutation and 
inversion) by Fig. 7. 

Observe that, in Fig. 7, ai has degree three (1 5 i < 4) and a5 has degree three or 
four. We distribute 

$(A) < +(3,3,3,3,3) = $‘t 

to each of c(Al), c(Az) and c(A3). This means that, if d^ is a region of r that 
receives positive curvature from at least one neighbouring region, then L! is a B- 
region containing at least two p-vertices; a routine check now shows that c*(a) < 
c(3,3,6,6,6) + $t < 0. 

Suppose that 1 = 9 or 12 11, and that m 2 11, n = 2 and k 2 3. If A is an interior 
region of r of degree less than 6, then either A is an A-region, and is given (up to 
cyclic permutation and inversion) by Fig.8, or 1 = 9 and A is an A-region of degree 5. 

If 1 = 9 and A is an A-region of degree 5, then A must either have two adjacent 
a-vertices, in which case A has degree at least 6, a contradiction, or two adjacent 
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Fig. 7. 

p-vertices, in which case c(A) 5 c(3,3,3,4,4) = 0. So we need only consider the 
situation shown in Fig. 8. 

In Figs.8(a) and (b), we distribute at(A) < ic(3,3,4,4) = &TX to each of c(Ai) (1 5 
i <P). In Fig. 8(c), we distribute it(A) 5 in to each of c(Al) and c(A2). As before, 
if A is a region of r that receives positive curvature from at least one neighbouring 
region, then 2 is a B-region and has degree at least 6. If d^ has degree at least 12, 
then 

c*(a) I [-10 + 12($) + 12(9]n = 0, 

and so we may assume that 6 5 deg(a) < 11. If d^ has degree 6 + 0, where 0 5 8 5 5, 
then d^ in II contained 5 - 0 cc-vertices of degree 2, which means that d^ can receive 
positive curvature across at most 26’+ 1 edges, in which case either the degree of each 
vertex in d^ is 3, in which case, since both p-vertices in Fig. 8(c) have degree greater 
than 3, d receives at most &rr across each edge, and 

c*(a) < [-(4 + S) + ;(6 + 0) + A(20 + l)]rt < 0, 

or d^ has at least one vertex of degree greater than 3 and 

c*(a) < [-(4 + 0) + $(5 + 0) + f + i(28 + 1)17X = 0. 

Lastly, we consider the case where 1 > 7, m 2 8, n = 2 and k = 4. Here, if A has 
degree 5, then c(A) 5 c(3,3,4,4,4) < 0, and, if A is an A-region of degree 4, then 
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(4 (b) 

Fig. 8. 

c( LI ) 2 c(4,4,4,4) = 0. Therefore, as in the previous case, the regions of r of positive 
curvature are given by Fig. 8; note, however, in this case that c(d) < c(3,3,5,5) = 
$7~. So, if d^ receives positive curvature, then d^ is a B-region and has degree at least 
five. If 6 has degree five, then d^ must have contained three cc-vertices of degree two 
in II, and so 

if A 

if A 

,*<a> < c(3,3,4,4,4) + +t < 0; 

has degree 6, then 

c*(a) 5 c(3,3,3,3,4,4) + &7c < 0; 

has degree 7, then 

c*(a) < c(3,3,3,3,3,3,4) + $71 < 0; 

lastly, if A has degree at least 8, then 

c*(a) 5 -6+8(f)+ +c < 0. 
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It follows from the above that krc is 
across any edge. Therefore, if d^ is the 

c*(J) < [(2 - 4) + 4(Z) + 4@ln 

and this yields the contradiction. 0 

Fig. 9. 

the maximum amount of curvature transferred 
distinguished region and a has degree q, then 

< 471, 

It turns out that there are examples of non-trivial reduced spherical pictures over KJ 

for certain values of 1, m, n and k, examples of which are shown in Figs. 9 and 10. 
Let D denote the set of elements of n*(Z) represented by dipoles. With this notation, 
we have: 

Theorem 4.2. (1) Zf 1 = 4, n = 2, and if either m > 7, k > 7, or m > 12, k = 5, then 
q(Z) is generated by D U yi, where 3 is given by Fig. 9. 

(2) Zf 1 = 6, m > 13, n = 2 and k = 3, then ~(2) is generated by D U 95, where 
92 is given by Fig. 10. 

(3) Zf 1 = 4, m > 13, n = 2 and k = 3, then 712(Z) is generated by D U 93, where 
*U; is given by Fig. 9 with k = 3. 

Proof. Suppose, by way of contradiction, that 712(Z) is not generated by DUX (where 
i = 1, 2 or 3 as appropriate), so that there exist pictures over @ representing elements 
of q(Z) - (D U 9$. Among all such pictures, choose one, D’ say, with the minimal 
number of vertices; this ensures, for example, that Il is reduced and connected. 

We obtain r from Il as before, except that there are differences, which we now 
discuss. In what follows, we refer to the three situations described in the statement of 
our result as Case 1, Case 2 and Case 3. 

First observe that, according to case, Il cannot contain a subpicture of Fig. 9 or 10 
which contains more than half the vertices (otherwise we could reduce the number of 
vertices in ZI, contradicting the minimality condition). This means, for example, that, 
in Case 1, if Ii’ contains a subpicture of the form shown in Fig. 11, then there are at 
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Fig. 10. 

Fig. 11 

most f(k-2) a-vertices if k is even, and at most $(k-3) a-vertices if k is odd. This, 
in turn, implies that, if k = 3, then Xl has no a-vertices of degree 2 of the type shown 
in Fig. 5. Another consequence is that, in Case 2, r will not contain any A-region of 
positive curvature. A further difference for Case 1 is that r may contain parallel edges 
between p-vertices which arise in the way shown in Fig. 12; in this case, we simply 
identify any parallel edges as illustrated there. 
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Fig. 13. 

In Case 1 with m > 7 and k 2 7, then, since we have k > 7, it follows from the 
statements made above that every P-vertex has degree at least six; therefore, if A is 
an i-region of r, then c(A) 5 c(3,3,6,6) = 0. If A is an interior region of degree 
5, then, since m 2 7, A must have contained in Zl two cc-vertices of degree 2, and 
c(A) 5 c(3,3,6,6,6) < 0. If A has degree 3, then A is given by Fig. 13(a), and 
c(A) 5 c(6,6,6) = 0. So, if c(A) > 0, then A is given (up to cyclic permutation and 
inversion) by Fig. 13(b) (in which y is either c( or fi). 

In Fig. 13(b), if y = /I, then add $(A) < &(3,3,3,6) = az to c(Al) and c(Az); 
if y = a, then it can be assumed, without any loss of generality, that ~11 has degree 
3, in which case-we add ire from c(A) to each of c(A l ) and c( AZ), and, if neces- 

sary, i[c(A) - f 1 TC to each of c(A3) and c(Aq). This means that positive curvature is 

Fig. 12. 

(b) 
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distributed only across edges that join a-vertices, and, if this amount (which is at most 
ire) exceeds An, then at least one of the a-vertices is adjacent in the region receiving 
the positive curvature to a p-vertex. It follows that, if a is an interior region of r that 
receives positive curvature, then d^ is a B-region of degree at least 5 containing at least 
one /?-vertex. If 2 has degree 5, then 

c*(a) 5 c(3,3,6,6,6) + ;rt < 0, 

if d^ has degree 6, then 

c*(i) 5 c(3,3,3,3,6,6) + $7~ < 0, 

and, if d^ has degree at least 7, then 

c*(a) 5 c(3,3,3,3,3,3,6)+ +t < 0. 

In Case 1 with m > 12 and k = 5, there can occur a /?-vertex of degree less than 
6, and this is shown in Fig. 13(c). Since m > 12 and there are no a-vertices of degree 
2 in ZZ, it follows that, if c(d) > 0, then A must be an i-region or an A-region of 
degree 4. We distribute c(A) uniformly among the neighbouring B-regions of A; it 
follows that, if 2 receives positive curvature, then d^ is a B-region of degree at least 
12, and 

,*<a> 5 [-10 + 12(9 + 12(9]7c = 0. 

For Case 2, if c(A) < 0, then A is one of the J-regions of Fig. 8. We distribute 
c(A) 5 c(3,3,4,4) = 5 uniformly among the neighbouring B-regions. Let d^ be an 
interior region of r that receives positive curvature. If d^ has degree at least 12, then 

c*(a) < [-10 + 12(9 + 12(9]71= 0, 

and, if 7 I 0 = deg( 2) < 11, then 

c*(a) < [-(0 - 2) + fe + i(20 - 13)]n < 0. 

For Case 3, observe that, since Il has no subpicture containing more than half of 
yi, it follows that the degree of any p-vertex contained in an A-region is at least 4. 
Therefore, if c(A) > 0, then either A is one of the j-regions of Fig. 8, or A is one of 
the regions of Fig. 14. We distribute c(A) uniformly to the neighbouring B-regions. In 
Fig. 14(a), each B-region will receive at most ic(3,3,3,3) = irt, and, in Fig. 14(b), 
each B-region will receive at most ic(3,3,4,4) = in. If 2 is an interior region of r 
that receives positive curvature then, since m 2 13, the proof that c*(A) < 0 is similar 
to that for Case 2. 

So we have now shown that, for all cases, if a is an interior region of r that 
receives positive curvature, then c*(a) 5 0, and that f rc is the maximum amount of 
curvature transferred across any edge. A contradiction is now obtained in the same 
way as in Theorem 4.1. 0 
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(a) (b) 

Fig. 14 

We now turn to the groups (lO,m j2,3), (6,m I2,5) and (4,m 1 3,5) with presenta- 
tions 

(a,b : a lo = b”’ = (ab)2 = (ab-1)3 = I), 

(a,b : a6 = b” = (ab)2 = (ab-‘)’ = l), 
(a,b : a4 = b”’ = (ab)3 = (ab-1)5 = I), 

respectively. We introduce new generators u = ab and v = b-la, and then delete 
a = bv, to get the presentations 

(u, v, b : u2 = v3 = (uv)’ = b”’ = u-‘bvb = l), 
(u, v, b : u2 = v5 = (uv)~ = b” = u-‘bob = l), 
(u, v, b : u3 = v5 = (uv)~ = b” = u-‘bvb = 1). 

We see that each group is a one-relator product of A E A5 and B g C,, with the 
extra relator being u -‘bvb, and we work with spherical pictures over this product. 
This is similar to the two-relator case, except that each corner label will now be one 
of {u,u-‘,v,v- ‘, b, b-‘} and reading round any vertex (in the clockwise direction) 
yields (u-‘bvb)*’ as a cyclically reduced word in A * B. Furthermore, it is clear that 
if the picture is reduced, then the label of any A-region will be cyclically reduced; by 
making moves similar to the one shown in Fig. 4, it can be assumed that the label 
of any B-region does not contain a substring bb-’ or b-lb. As before, we can regard 
each presentation as a two-dimensional CW-complex Z with rc’(Z) isomorphic to the 
corresponding group, and we let D denote the set of elements of 7t2(Z) represented by 
dipoles. 

Theorem 4.3. (1) If 1 = 10, m 2 15, n = 2 and k = 3, then 7c2(Z) is generated by 
D U .!Yj, where 9-j is given by Fig. 15 with r = 10. 

(2) If 1 = 6, m 2 9, n = 2 and k = 5, then x2(Z) is generated by D U &, where 
.Yj is given by Fig. 15 with r = 6. 
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Fig. 15. 

Fig. 16 

(3) If I = 4, m 2 11, n = 3 and k = 5, then ~(2) is generated by D U Fj, where 
$3 is given by Fig. 15 with r = 4. 

Proof. As in the proof of Theorem 4.2, we assume, by way of contradiction, that x2(Z) 
is not generated by D u z (where i = 1,2 or 3 as appropriate), and we let ll be a 
counterexample having the minimum number of vertices. 

We form the graph r from Ii’ in a similar way to the method discussed in Section 
3, and let A be an interior region of r of positive curvature obtained from the region 
d” of n. 

If 1 = 10, m 2 15, n = 2 and k = 3, then it follows from the facts that A has degree 
at most five and that LI cannot contain more than half of 9j that 2 has degree at most 
11. In fact, the maximal case is shown in Fig. 16. 
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Fig. 17 

Since d is an A-region, it follows that we need to check cyclically reduced words 
in u and u of length at most 11. (Recall that 17 is reduced.) Such a check shows 
that, in fact, A does not have degree two or four, and, if A has degree five, then at 
least three of the edges of A are contained in adjacent B-regions. If A has degree 
five, then distribute $c(A) 2 in to each of the B-regions across the appropriate edges. 
If A has degree three, then A is given (up to cyclic permutation and inversion) by 
Figs. 17(a)-(d). 

In Fig. 17(a), distribute tc(A) = ~TC to each of c(Ai), 1 < i 2 3. In Fig. 17(b), 
c(A) = in, so distribute OTT to each of c(Al) and c(A2) and $c to c(A3). In Fig. 17(c), 
c(A) = $71, so distribute ire to c(Al) and i7c to each of c(A2) and c(A3). In Fig. 17(d), 
distribute $c(A) = i7c to each of c(Ai), 1 2 i < 3. 

If 1 = 6, m 2 9, n = 2 and k = 5, then it is easy to verify (using the fact that 
I7 does not contain more than half of Tz) that, if c(A) > 0, then A has degree 5, 
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Fig. 18. 

and, again, there are at least three edges of A contained by B-regions adjacent to A. 
Distribute f c(A) 5 ~TC to each of these B-regions. 

If I = 4, m _> 11, n = 3 and k = 5, then it is easy to verify (using the fact that Zl 
does not contain more than half of Ts, and so, in fact, no vertices of degree two) that 
A is given (up to cyclic permutation and inversion) by Figs. 18(a) and (b). 

In Figs. 18(a), distribute it(A) = in to each of c(Ai), 1 5 i 5 3. In Fig. 18(b), 
distribute it(A) 5 AZ to each of C(Aj), 1 <j 5 5. 

We have described, in each case, the interior regions of positive curvature and the 
distribution of such curvature. Now let d^ be an interior region of r that receives 
curvature across at least one edge. Let 2 have degree 0. 

If 2 = 10, m 2 15, n = 2 and k = 3, the key observation is that, if irr is transferred 
across any edge e, then, as can be seen in Fig. 17, the edge immediately to the left of 
e belongs to two B-regions, and so no curvature is transferred across it. It follows that 

,*<a> < 
[ 
-(e - 2) + y + ;] 71, 

and, since 0 > 15, we obtain c*(8) < 0. 

If I = 6, m 2 9, n = 2 and k = 5, then 

c*(a) I 
[ 
-(0 - 2) + y + ;] 7r, 

and, since 0 2 9, it follows that ~*(a) _< 0. 
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If 1 = 4, m 2 11, n = 3 and k = 5, and d^ does not receive in across any edge, 
then 

c*(& 
I 
-(u-2)+;+; 71. 1 

Otherwise, it is clear from Fig. 18(a) that a contains at least two vertices of degree 4, 
and 

c’(d)< -(8-2)+7 
1 

+a+; 71. 1 
Since 0 2 11, it follows that c*(a) 5 0. 

Finally, if d is the distinguished region, then it is clear from the above that 

c*ca>< 
[ 
-((I-2)+;+; 7c<47c, 1 

and this yields the desired contradiction. 0 

5. Non-collapsing 

As in Section 2, we say that the group (1, m ( n, k) defined by the presentation 

@ = (a,b : a’ = b”’ = (ab)” = (ab-‘)k = 1) 

does not collapse if a, b, ab and ab-’ have orders I, m, n and k, respectively. We now 
prove: 

Theorem 5.1. Zf 1, m, n and k satisfy any of the hypotheses of Theorem 4.1, Theorem 
4.2 or Theorem 4.3, then (1,m 1 n,k) does not collapse. 

Proof. It follows from Theorems 4.1 and 4.2 that no spherical picture over @ has 
boundary label a non-trivial element of (a : a’ = 1) or (b : bm = 1); so a and b have 
orders 1 and m, respectively; it remains to show that ab has order n and ab-’ has 
order k. 

Consider first the situation where one of the hypotheses of Theorem 4.1 is satis- 
fied. Suppose, by way of contradiction, that ab has order s where s < n, so that 
n = sr for some Y > 1. Let ZI, be a picture with boundary label (ab)s; then the 
disjoint union of r copies of ZYZ, has boundary label (ab)“. We can form a spherical 
picture Zl from this by adding a single u-vertex labelled (ab)-“; thus, the number 
of a-vertices in ZZ labelled M. minus the number of cl-vertices labelled cl-’ in ZZ is 
congruent to - 1 (mod r), and is therefore non-zero (as Y > 1). This contradicts the 
fact that ~(2) is generated by dipoles, and any dipole containing an m-vertex contains 
exactly one of each sign. So ab has order n. A similar argument shows that ab-’ has 
order k. 
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a 

Fig. 19 

So we mm to the case where one of the hypotheses of Theorem 4.2 is satisfied. 
In all but the case where 1 = 4, n = 2, m > 7 and k > 7, the result is immediate, 
since ab having order less than n or ab -’ having order less than k would force b 
to have order less than m, contradicting the above. So we have this last case to con- 
sider, and it is clear that ab must have order 2 (else b would again have order less 
than m). 

Suppose then that we have a picture II over k;, with boundary label (a-‘b)“, where 
0 < u < k, and assume that the sum of the number of ol-vertices and the number of 
p-vertices of n is minimal over all such pictures. If A is a boundary region of n of 
positive curvature, then (up to cyclic permutation and inversion) A is as in Fig. 19. 

We distribute it(A) I $(3,3,3,3,3) = frc to each of Al and AZ. If A is an 
interior region of n of positive curvature, then distribute c(A) as described in the 
proof of Theorem 4.2. Let A be any region of II that receives positive curvature. 
It follows that it is still the case that positive curvature (of at most irr) is dis- 
tributed only across vertices joining a-vertices, and, if the amount exceeds Arc, then 
at least one of the cc-vertices is adjacent in A to a p-vertex. The argument that 
c*(A) < 0 is now similar to the one in Theorem 4.2. This contradiction yields the 
result. 

Lastly, suppose that 1, m, n and k satisfy one of the hypotheses of Theorem 4.3. 
It follows from Theorem 4.3 that no spherical picture over the one-relator product 
AS * C,,J{u-lbub} has boundary label a non-trivial element of (b : b”’ = l), and so 
b has order m. If uu does not have the prescribed order in any of these cases, then 
uv = 1, so that u = v = 1, and then b = a, which gives b* = 1, a contradiction. So 
uv has the prescribed order, and so a2 = uv has order f (equal to 5, 3 or 2 according 
to case). If a has order I, then we have proved the theorem, since any collapse of 
the order of ab or ab-’ clearly forces a = b*‘, a contradiction. So assume that a has 
order i = 5,3 or 2. We thus have the group (5,m I2,3), (3,m [2,5) or (2,m I3,5). The 
group (5, m I2,3) is either isomorphic to A5 or is trivial by Proposition 2.1, (3, m ) 2,5) 
is isomorphic to (3,2 1 m, 5) (see the comment after Proposition l.l), i.e. (2.3 I 5, m), 
which is isomorphic to As or is trivial by Proposition 1.1, and (2,m [3,5) is trivial by 
Proposition 1 .I. So, in all cases, we either have As or the trivial group, so that b has 
order at most 5, a contradiction. Thus a has order 1 as required. 0 
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Let 

C *D 

be a pushout of groups. If KA, KB and KC are Eilenberg-Maclane spaces of types 
K(A, 1 ), K(B, 1) and K(C, 1 ), respectively, and if 4 : KA + KS and 4 : KA + Kc 
denote the continuous maps realizing $ and 4 at the fundamental group level, then 
we can form a space X with rci(X) = D by setting X = M($) UK~ M(J), where 
M(.) denotes the mapping cylinder. We say that the pushout is geometrically Mayer- 
Vietoris if X is aspherical, i.e. a K(D, 1) space. If this is the case, then the following 
two facts can be deduced (see [16, Section 5; 8, Section 41): 

1. The (co)homology of A, B, C and D with coefficients in a given m-module 
(where R is any commutative ring with identity) is linked by a Mayer-Vietoris se- 
quence 

2. If A, B and C is each of type FPQ, then so is D, and, moreover, 

xc@) = ~0) + xa(C) - XQ(A), 

where xo is the rational Euler characteristic. 
We may now prove the following. 

Theorem 5.2. Zf any of the hypotheses of Theorem 5.1 hold, then the group G = 
(I, m ( n, k) is injinite. 

Proof. If 1, m, n and k satisfy one of the hypotheses of Theorem 4.3, then G is infinite 
by Proposition 2.9. 

Next assume that I, m, n and k satisfy one of the hypotheses of Theorem 4.1. If we 
take 

A = (c,d : ), B = (c,d : c” = dk = l), and C = (a,b : a’ = b” = l), 

and if we define $ : A + B by clc/ = c, d$ = d, and 4 : A + C by c4 = ab, 
dr$ = ab-‘, then D in the pushout is isomorphic to G. Since G does not collapse by 
Theorem 5.1, we can use an argument similar to that used in Section 5 of [7] to show 
that the pushout is geometrically Mayer-Vietoris, in which case, if D were finite, we 
would have 

Hom(D,M) ” Hom(Cl,M) x Hom(C,,M) x Hom(C,,M) x Hom(Ck,M), 

where, in particular, A4 can be taken to be the cyclic group of order Imnk. Now it is 
clear that 

IHom(G, Clmnk)l 5 IHoNG, Clmnk)\ X IHoNG, &tnk)I, 
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since, once we have specified the images of a and b, we have no choice with ab and 
ab-‘. So we can only have the isomorphism stated if Hom(C,, Cl,&) and Hom(Ck, 
Cl,&) are trivial, a contradiction. So D is infinite, and hence G is infinite. 

Now assume that I = 6, m > 13, n = 2 and k = 3. This time, we let 

A = (c,d : c3 = d3 = l), B = (c,d : c3 = d3 = (~d)~ = l), 

and C = (a,b : a6 = b” = (a-1b)3 = l), 

and define II/ : A + B by dll/ = d, I$ = c, and 4 : A --+ C by CI$ = a2, d4 = ba-‘; 
then the group D is isomorphic to G. Note that B is isomorphic to A4 and that C is the 
triangle group (3,6,m). The non-collapsing of G (Theorem 5.1) shows that the kernel 
of the map from A to G is free, and hence of homological dimension one, that the 
kernel of the map from B to G is trivial, and that the kernel of the map from C to 
G is a torsion-free surface group, and so has homological dimension at most two. If 
we can show further that, for the K(D, 1) space X mentioned above, 712(X) = 0, then 
it follows from Theorem 4.2 of [15] that X is aspherical, and hence that the pushout 
is geometrically Mayer-Vietoris. If this is the case, and if D has finite order N, then 
applying our fact about Euler characteristics yields 

1 -=- 
N 

112+ ;+;+A-1 
( 

)_(;+;_l)+~, 

which contradicts the fact that m > 13. So D E (6, m I2,3) is infinite. 
To show that 712(X) = 0, we need only show that the generators of rc&Y) come from 

the presentations for B and C. This is clear for dipoles, and so we need only consider 
Yz. Note that the identities d = ba-‘, c = a2 change (ab)2 to (cd)2 and (ab-‘)3 to d3. 
It follows that, if we make these identifications, then 92 transforms to y;’ of Fig.20(a). 
But 9; corresponds to the spherical van Kampen diagram of Fig. 20(b), and hence is 
zero in n2(&). This shows that x*(X) = 0 as required. 

Suppose that I= 4, m > 13, n = 2 and k = 3. Let 

A = (c,d : c2 = d2 = l), B = (c,d : c2 = d2 = (cd)3 = 1) 

and C=(a,b:a4=bm=(ab)2=1), 

and define $ : A -+ B by cll/ = c, d$ = d, and 4 : A + C by c4 = ab, dqh = a2; 
then D is isomorphic to G. A similar argument to the one used above shows that the 
pushout is geometrically Mayer-Vietoris (the corresponding transformed picture 93 and 
spherical van Kampen diagram are shown in Fig. 21). 

If D has finite order N, then applying our fact about Euler characteristics yields 

1 1 -= 
N 6+ ( 

~+~+~_1)_(~+~_1)=~_~, 

which again contradicts the fact that m 2 13. 
This only leaves the groups (4,m 12, k) with m > 7 and k 2 7 or m 2 12 and 

k = 5, where 1 jm + l/k > i. In each case, we are considering the group G with 
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d 

Fig. 20. 

d 

Fig. 21. 

presentation 

(a,b : a4 = b” = (ab)2 = (ab-‘)k = 1). 

The groups (4, m 12, k) with m or k even are covered by Corollary 2.5; so we need to 
consider the groups (4,m 12, k) with m and k both odd. 
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(4,7 /2,7): We have a mapping from G to the alternating group A’s defined by 

a H (2,3,4,5)(6,8,10,7)(9,12,13,11)(14, IS), 

b H (1,2,4,7,9,6,3)(8,11,13,15,14,12,10). 

Let H be the subgroup generated by a, b2a-‘b and b-2ab2ab-1a-1b2. Then H has 
index 15 in G and the presentation 

(x,y,z :z2 =x4 = @y-l)7 =(&-'y2zy-'z~y-')2 

= (x2yx-‘yzxy-‘)7 = 1). 

Since i + $ + + + i + i < 2, H is infinite by Proposition 2.9 if there is no collapse. 
However, the mapping from G to A ‘5 described above gives rise to a mapping from 
H to A’S defined by 

x H (2,3,4,5)(6,8,10,7)(9,12,13,1 l)( 14, IS), 

y H (2,6,15,10,8)(3,12,11,14,13,4,9,7,5), 

z H (2,12)(4,9)(5,15)(6,7)( 10,14)( 11,13). 

This shows that there is no collapse, so that H is infinite, and hence G is infinite. 
(4,9 /2,7): If we let H be the subgroup of G generated by a, b2ab-‘, ba-‘ba-‘b2 

and b-‘ab4, then H has index 9 in G and H/H’ is isomorphic to C7 x C,, so that G 
is infinite. 

(4,7 I2,9): We have an obvious homomorphism 4 from (4,7 I2,9) to (4,7 /2,3), 
which is isomorphic to PSL(2,7) by Proposition 2.1. If K is the kernel of 4, then 
K has a presentation on 20 generators and 29 relators such that KjK’ is elementary 
abelian of order 320. So K is infinite by Theorem 2.10, and hence G is infinite. 

(4,13 I2,5): Let H be the subgroup generated by the elements 

a, b2ab-‘, be2ab3, ba-‘b2ab-lab-‘, b-1ab3ab-2a-1b, 

b-5ab-‘a-‘b, b-‘ab-4a-‘b2a-’ b and b-‘ab2a-1b2a-2b-2a-‘b. 

Then H has index 26 in G, H/H’ is isomorphic to C2 x Cj and H’/H” is isomorphic 
to Ct7 x Cz4. So G is infinite. 

(4,15 I2,5): Let H be the subgroup generated by 6, a2b-‘a and a2b3a-‘. Then H 
has index 6 in G and presentation 

(X, y,z : P = y2 = 25 = (q&f’)2 = (~z-‘y)3 = 1). 

If we add the relation z = 1, we get a presentation for the triangle group (2, 3, 15). 
So G is infinite. 

(4,17 I2,5): This time we let H be the subgroup generated by a, b-‘abe3, b’a-‘b3 
and b-1ab2ab-3a-1b. Then H has index 17 in G and has a presentation with 4 gen- 
erators and 3 relators. So H is infinite, and hence G is infinite. 
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(4,19 I2,5): This time we take H to be the subgroup generated by the following 
elements: 

a, b2ab-‘, b-‘ab4, ba-‘b’ab-lab-‘, b-1ab-2ab3a-‘b, 

b-‘ab-‘ab’a-‘b’a-‘b2, b-‘ab-5ab-‘a-‘ba-1b, 

b-‘aba-‘b5ab-4ab-‘a-1b and b-2ab-5a-‘ba-1b3a-‘b2. 

We find that H has index 38 and H/H’ is isomorphic to Ci x C4 x Cs x CL, so that 
G is infinite. 0 

6. The groups (4, m 1 II, k) 

In this section, we will consider the groups (4,m 1 n,k) (with m > 4) not covered 
by Theorem 5.2. If n = k = 2, then the group is finite, and so we will assume that 
k 2 n 2 2 and that k > 3. If m is even, or if k is even with n = 2, the group is cov- 
ered by Corollary 2.5; this takes care of (4,6 ) 2,k), k 1 3, (4,4 I3,k), 3 2 k 5 5, 

(4>613,k), 3 I k L 5, (4,1012,3), (4,1212,3), (4,m12,4), m 2 7, (4,813,4), 
(4,813,5), (4,10(3,5), (437 IZ6), (4,8)2,5), (4,8)2,6), (4,9(2,6), (4,lO I&5), 
(4,lO I 2,6) and (4,ll I 2,6), which are all infinite with the exception of (4,6 I 2,3). On 
the other hand, Proposition 2.1 gives that (4,4 12, k), k > 3, and (4, m I 2,3), 7 < m 5 9, 
are finite. The group (4,5 ( 2, k), k 2 3, is finite if and only if k < 5 by Theorem 2.6. 

This leaves the following groups, which we deal with on a case-by-case basis. In 
each case, we are considering the group G defined by the presentation 

(a,b : a4 = b” = (ab)” = (ab-l)k = 1) 

(4,5 / 3,3): The subgroup H generated by the elements a, b2 ab-’ and bab3 has index 
5 and presentation 

(U, v,w : u4 = v2 = Iv3 = (zA$ = (uwy = (VW)3 = (uvw-‘)3 = 1). 

If we let K be the subgroup of H generated by u, v, w-‘uw and w-‘VW, then K has 
index 3 in H and presentation 

(d,e,f,g : d2 = e2 = (de)’ = f 4 = g4 = (df’)’ = (eg’)’ 

= def dgef -‘g-l = (fg)4 = (degfgf )’ = 1). 

Add the relations f2 = g2 = (f g)’ = 1 to get a homomorphic image L with presenta- 
tion 

(d,e, f,g : d2 = e2 = (de)’ = f2 = g2 = defdgefg = (fg)’ = 1). 

The derived subgroup of L has index 16 in L and is free abelian of rank three, and so 
(4,5 I 3,3) is infinite. 
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(4,5 /3,4): The subgroup H generated by the elements a, bab-’ and b-‘aba-‘b* 
has index 10 and presentation 

( 24, v, w : u4 = w4 = @v-l)4 = ~~-1wuw~-‘w-‘vw-1~-‘~-l 

= @.4vu-4$ = 1). 

If we add the relation u = 1 we see that G maps onto the free product Cd * Cd, so that 
G is infinite. 

(4,5 I3,5): We may define a homomorphism from G to the alternating group A6 
by a I-+ (1, 2, 5, 3)(4, 6) and b +-+ (1, 2, 3, 4, 5). This shows that a, b, ab and 
ab-’ really do have orders 4, 5, 3 and 5 respectively in G, so that G is infinite by 
Proposition 2.9. 

(4,ll I2,3): If we add the extra relation 

b-‘ab3a-‘b-‘ab3a-‘b-2a-‘b3ab-‘a-’b2a-’ = 1, 

we get the group PSL(2,23) of order 6072, and the kernel of the map from G onto 
PSL(2,23) has infinite abelianization; so G is infinite. 

(4, m I3,3), m 2 7: There is a natural homomorphism from (4, m I 3,3) onto (2, m /3,3), 
i.e. onto the triangle group (2,m, 3) which is infinite for m 2 7. So (4,m /3,3) is in- 
finite. 

(4,7 I 3,4): We may define a homomorphism from G to the alternating group As by 
a H (1 5 3 7)(2 8 4 6) and b H (1 4 7 3 6 8 5). This shows that a, b, ab and 
ab-’ really do have orders 4, 7, 3 and 4, respectively, in G, so that G is infinite by 
Proposition 2.9. 

(4,9 I 3,4): We have a homomorphism from G onto As defined by 

a H (3,4,6,5)(8,9), b-(1,2,3,5,6,7,8,9,4). 

So G does not collapse, and hence is infinite by Proposition 2.9. 
(4,m [3,4), m 2 10: Since (4,m ( 2,3) is infinite for m > 10 by Corollary 2.5 and 

Theorem 5.2, (4,m I3,4) is infinite also. 
(4,7 I3,5): We have a homomorphism from G onto A7 defined by 

a ++ (1,4,7,2)(3,6), b-(1,3,6,5,2,4,7). 

So G does not collapse, and hence is infinite by Proposition 2.9. 
(4,9 I3,5): We have a homomorphism from G to A27 defined by 

a ++ (1,23,2,22)(3,13,7,9)(4,20,8,27)(5,19,16,26)(6,14,15,10)(11,24) 

(12,21)(17, lg), 
b - (l,lO, 15,2,12,27,25,26,23)(3,9,21,16,19,14,17,18,13) 

(4,7,6,11,24,22,5,8,20). 

In fact, G is being mapped onto U4(2) here, where U4(2) is acting as a group of 
incidence-preserving permutations of the 27 lines of the generalized cubic surface 
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in projective 3-space. In any case, G does not collapse, and hence is infinite by Propo- 
sition 2.9. 

(4,7 [2,5): Let H be the subgroup generated by the elements 

a, b2ab-’ and b-‘ab2ab-3a-1b. 

Then H has index 21 in G, H/H’ is isomorphic to C2 x C2, H’/H” is isomorphic to 
C5 x C’s, and H” has a presentation on 278 generators and 267 relators. So H” is 
infinite, and hence G is infinite. 

(4,9 I2,5): Let H be the subgroup generated by 

a, b2a2bK2, bp2ab3 and ba-’ b2abe2. 

Then H has index 15 in G and has presentation 

(w,x, y,z : Jv4 =x2 = y2 = (wz)3 = (%v2zxz-‘xyz-‘)3 

= w2zxz-Vzyxw-‘ywxyz-’ = 1). 

Adding the relations x = y = 1 yields a presentation for the triangle group (3,3,4), so 
that G is infinite. 

(4,ll j2,5): Let H be the subgroup generated by 

a, b2ab-‘, be2ab3, b-‘ab-‘ab2a-‘b, b-‘ab-‘ab2a-‘b, 

b-‘aba-1b-3ab-1 and b-‘ab3ab-3a-‘b. 

We find that H has index 22 in G, H/H’ is isomorphic to C2 x C2 x C4, and H’/H” 
is isomorphic to C:’ x CE. (In fact, H has a presentation on 28 generators and 19 
relators.) So G is infinite. 

7. The groups (I, m 1 n, k) with I > 4 

In this section, we will consider the groups (I, m 1 n, k) (with m 2 I > 4) not covered 
by Theorem 5.2; in all such cases, we have that n = 2, and we will assume that this 
condition holds throughout this section. If (in addition) k = 2, then the group is finite, 
and so we will assume that k 2 3. If any two of l,m and k are even, the result follows 
from Corollary 2.5; this takes care of (6,6 [2,3), (6,8 [2,3), (6,lO I2,3), (6,12 I2,3), 

(6,ml2,4), m 2 6, (6,612,5), (6,812,5), (g,812,3), (g,lOl2,3), (10~0 I 2,3), (10, 
1212,3) and (lO,ml2,4), m 2 10, which are all infinite. The groups (5,5 12, k), k 2 
3 are finite for k = 3 or k = 4 and infinite otherwise by Theorem 2.8; Theorem 
2.8 also gives that the groups (7,712,4), m > 7, (9,912,3) and (11,11(2,3) are 
infinite. 

The groups (5, m I 2,3), m > 5, (6,7 I 2,3) and (7,7 I 2,3) are finite by Proposition 2.1, 
and (7,8 I2,3) is finite by Theorem 2.2. The group (5,m I2,4), m > 5, is isomorphic 
to (4,5 I2,m) by Proposition 2.3, and so is infinite by Theorem 2.6. The group 
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(5,m ) 2,5), m > 5, is isomorphic to (5,5 I2,m) by Proposition 2.3, and so is infinite 
by Theorem 2.8. The group (7, m ) 2,3), m 2 9, is infinite by Theorem 2.7. 

This leaves the following groups, which we deal with on a case-by-case basis. Again, 
we are considering the group G with presentation 

(a,b : .I = bm = (ab)” = (ab-l)k = 1) 

in each case. 
(6,9 [2,3): Let H be the subgroup generated by a2b-‘, ba and b3abe2. Then H has 

index 18 in G, H/H’ is elementary abelian of order 8 and H’/H” is free abelian of 
rank two, so that G is infinite. 

(6,ll I2,3): Let H be the subgroup generated by ab-‘, a2, a-‘b4a-2b and 
bb2 a2b-‘a-‘b’. Then H has index 22 in G, H/H’ is isomorphic to Cj, HI/H” is 
isomorphic to C;, and H”/H”’ is infinite, so that G is infinite. 

(6,7 ( 2,5): Let H be the subgroup generated by the elements a, b2ab-‘, b-lab2 and 
ba-‘ba2ba-‘b-lab-‘, which has index 16 in G. Then the commutator subgroup H’ 
of H has index 4 in H and infinite abelianization; so G is infinite. 

(8,9 ) 2,3): Let H be the subgroup generated by a, bp2a3bw2 and b3ae2bp2, which 
has index 18 in G and presentation 

(x,y,z:x8 = y2 = z8 = xzx -1 
ZYZ 

-lX-lzXz-lX-l 
yz-2 

= X2z-1X-1zXz-1X-lz2XzX-1z-l xz = 1). 

Adding the relation x = z yields (x, y : x2 = y2 = l), and hence G is infinite. 
(8, m I2,3), m 2 11: Since (4, m I2,3) is infinite for m 2 11 by Corollary 2.5 and 

Theorem 5.2, these groups are infinite also. 
(9,lO I2,3): If we add the relations 

a-2b-3a2b-‘a-‘bab-2a2b_’ = b2a-3b-2a-‘b2a-2bab-]a-’ = 1, 

we get the group PSL(2,19) of order 3420. The kernel of the homomorphism from G 
onto PSL(2,19) has infinite abelianization, and so G is infinite. 

(10,ll ) 2,3): Let H be the subgroup generated by a, b2ab-‘, b-‘a2b-‘a-‘b and 
b-2a2b-‘a2b-‘a- ‘bap2b2. Then H has index 22 in G and has a presentation on 4 
generators and 9 relations. Using Quotpic, we find that H has 21 maps onto Ad. One 
of these maps has kernel with abelianization isomorphic to Cf, x CL, and hence G is 
infinite. 

(lo,13 I2,3): If H is the subgroup generated by a, b2ab-‘, bp2ab3 and bp3a3b-‘, 
then H has index 13 in G and has a presentation on 4 generators and 8 relations. Using 
Quotpic, we find that H has several maps onto &. One of these maps has kernel with 
abelianization isomorphic to Cz, and hence G is infinite. 
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